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Abstract—This paper discusses two recent formulation 
phase Model-Based Engineering Design pilot projects at the 
Jet Propulsion Laboratory. It describes how model-based 
functional and state analyses were synthesized and 
integrated with system performance simulation and mission 
planning then piloted in the formulation phase of two deep 
space missions. 
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 1.0 INTRODUCTION 
At the Jet Propulsion Laboratory (JPL) the life-cycle of a 
deep space mission normally goes through six phases, each 
culminating with a review by project management and its 
funding agencies [1]: 
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• Pre-Phase A: Advanced Studies 
• Phase A: Mission & System Definition 
• Phase B: Preliminary Design 
• Phase C: Design & Build 
• Phase D: Assembly Test & Launch Ops 
• Phase E: Operations 
 
Model-based engineering design (MBED) enhances the 
description of a system beyond traditional language, 
utilizing both descriptive and simulation models to improve 
the understanding and verification of the system.  
 
In fiscal year 2004 (FY04), JPL’s Research and Technology 
Development (R&TD) program undertook a multi-year 
initiative to incrementally build an end-to-end, concept to 
operations, model-based approach for JPL space mission 
system design. In FY06, the initiative focused on the 
spacecraft (S/C) formulation in Phase A. Since many of the 
activities in this phase center on system engineering, the 
initiative focused on developing its model-based system 
engineering (MBSE) capabilities.  
 
Systems engineering has been described as an 
interdisciplinary engineering management process that 
evolves and verifies an integrated, life-cycle balanced set of 
solutions that satisfies customer needs [2]. Rather than 
focus on one particular aspect of the system, system 
engineers address broad system-wide issues such as cost, 
schedule, risk, performance, training, support, test, 
manufacturing and operations throughout a project’s 
lifecycle.  
 
Early in a project, system engineering tasks focus on 
defining and documenting customer needs, desired 
functionality, and requirements. Later as the system is being 
developed the emphasis shifts to design synthesis and 
system validation. At JPL these activities span many 
domains including project system engineering, flight system 
engineering, payload system engineering, software system 
engineering, and mission operations system engineering, in 
an attempt to meld each technical discipline into a unified 
whole.  
 
The lab’s current system engineering methodology was 
adapted from the document-based paradigm established in 
the 1940’s and 50’s by the Manhattan project and early 
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space program engineers. While this approach has been 
responsible for many successes, early space projects were 
relatively simple when compared to recent missions. It is 
now widely recognized that the document-based approach 
does not scale well. There are a number of well-documented 
deficiencies when applying these techniques to larger, more 
complex systems, most notably in the areas of requirements 
traceability and verification and validation (V&V) activities.  
 
Recent missions have required extremely precise 
measurements from highly sensitive instruments in 
increasingly remote and unfamiliar environments. This 
impacts the entire system, requiring complicated and/or 
physically large mechanisms with many interconnected and 
compounded processes. With many more 
interdependencies, the chances of a requirement or design 
change having an unintended and possibly catastrophic 
effect on the project increases. Being able to quickly 
recognize and react to unanticipated effects and/or budget 
issues is critical in JPL’s schedule and cost constrained 
environment. 
 
MBSE is an alternative to the current document- based 
approach. MBSE analysis and design methods utilize 
structured, graphical, implementation-independent 
notational systems for producing unambiguous 
documentation of system requirements and design. As with 
other notational systems these model-based languages have 
syntax (structure) and semantics (meaning). What makes 
them unique is that they can produce artifacts that are both 
machine-readable and human-readable. This means that 
consistency, completeness and integrity of requirements and 
design can be checked with automated system audits. It also 
means that one can select and quantitatively transform 
system engineering information, enabling other kinds of 
analyses such as simulation-based risk and performance 
assessments.  
 
By adopting a model-based systems engineering approach, 
models become the project knowledge, capturing all 
rationale and decisions. Requirements and designs are 
stored and exchanged using a standardized information 
model. The expressive power of models and the rigor of a 
model-capture and analysis process offer great benefits. 
Much like the advance that algebraic notations offered 
physics; the model-based approach provides clear 
definitions of behavior, capability, and design for system 
engineering activities. 
 
Computer-based simulation models, on the other hand, are 
commonplace in academia and industry. Supported by 
increasingly powerful commodity computer hardware and 
modern computational methods, simulations are able to 
provide better forecasts faster than ever before. For this 
reason they are now indispensable tools in many business, 
engineering and science disciplines. Aerospace companies, 
for example, use simulations to analyze and tune vehicle 
performance, while automobile manufacturers use them as a 

means to upgrade manufacturing processes and simulate 
crash tests to improve vehicle safety.  
 
Simulations are widely accepted and used in investment 
analysis, decision (risk) analysis, systems analysis, product 
design, and training. In engineering applications, 
simulations enable early detection of subtle design errors 
allowing engineers to reliably create complex systems that 
are well beyond the capability of traditional approaches. At 
JPL they are often important tools in minimizing risk and 
maximizing flight readiness. 
 
Integrating the model-based systems engineering process 
with the simulation and mission planning processes is an 
important aspect of model-based engineering design.  This 
type of integration is different than the time-based 
integration needed in simulation models. In process 
integration, processes (or applications) are run to 
completion and their data is passed to other processes. Thus, 
the focus of process integration is inter-application 
communication and execution rather than event handling. 
 
The paper begins with a brief overview of the traditional 
functional analysis approach and a newer state analysis 
approach to systems engineering. It then goes on to discuss 
the synthesis of these two approaches, and their integration 
with performance simulations and mission planning. The 
paper concludes by presenting the results of two JPL 
formulation phase pilot efforts. 
 

2.0 FUNCTIONAL ANALYSIS 
Engineering a large, complex system necessarily involves a 
decomposition of the system into smaller units. In the case 
of space missions, it is common and reasonable to impose a 
hierarchical decomposition, working from larger elements at 
the top of the hierarchy (Level 1) to smaller elements at the 
bottom, until the system is sufficiently described to begin 
implementation (typically Level 5).  
 
The typical system engineering process for JPL missions is 
functional analysis, also known as functional 
decomposition. An overview of a generic “Level-N” 
functional decomposition process is shown in Figure 1. 
 
The process begins by defining the problem to be solved. 
This step involves developing a Concept of Operations, 
identifying stakeholder needs, and documenting the 
boundary between the system being designed and external 
elements. Next a functional architecture of the system is 
developed. This includes both a definition of the Concept of 
Operations in the form of an ordered model of the functions 
(scenario functions) performed by the system and the 
intrinsic functionality, with information flow, at Level-N 
that is required to execute the scenario. 
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Figure 1 Typical System Engineering Process 

 

 

Figure 2 Conceptual Layout of Requirements, Functions and Physical Components 

After the functions of the system are defined, the system’s 
physical architecture is defined (with definitions for the 
product breakdown structure) and system requirements are 
developed. As functions, physical components and 
requirements are created; connections between them are 
created as well so that the relationships linking functions, 
physical components and the rationale for requirements are 
also stored.  
 
This iterative process is followed at each level, with design 
products (requirements, functional models, etc.) at the 
higher level flowing down to provide a starting point for the 
next lower level. Ultimately a hierarchy of functions, 
physical components (product breakdown structure) and 
requirements are created along with the linkages between 

the functional, physical and requirement hierarchies. This is 
shown graphically in Figure 2. 
 
This process is currently performed at JPL using a 
document-based methodology. The system’s functional 
architecture, physical architecture and requirements are 
described with documents in natural language. In this 
approach, while connections within and between hierarchies 
are defined, they are difficult to verify thoroughly. 
 
The model-based methodology utilizes a model-based 
language, having a defined syntax (structure) and semantics 
(meaning), in a computer-aided model-based systems 
engineering tool. The advantage is that connections within 
and between hierarchies can be created and machine 
audited. For example, the user can create a system 
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engineering tool script to verify that all requirements have 
been addressed. 
 
In addition, metadata can be stored with each function, 
requirement and/or physical component. The advantage 
here is that design data, for example, can be stored with the 
physical components. 
 
Furthermore, the computer-aided model-based systems 
engineering tool can produce artifacts that are both 
machine-readable and human-readable. This means that 
documents, such as review gate products, can be produced 
from the repository of system engineering information and 
that data can be extracted to execute simulation-based 
verifications. Thus the computer-aided model-based 
systems engineering tool becomes the central, single 
repository of system engineering knowledge on the project. 
While these principles apply to virtually any computer-
aided model-based systems engineering tool, the MBED 
pilot projects used CORE from Vitech [3]. 
 
 3.0 STATE ANALYSIS 
While functional analysis provides a good static view of the 
system, its ability to represent dynamic behavior is severely 
lacking. Understanding dynamic interactions typically 
encountered in the design of complex systems, such as 
autonomous unmanned air vehicles, robotic vehicles and 
spacecraft, and automated ground infrastructure, is crucial. 
 
In this formulation phase model-based engineering design 
process, the dynamic aspects of requirements analysis and 
design synthesis are addressed with mission planning and 
performance simulation (described in the following 
sections). To address dynamic aspects of functional 
analysis, behavioral modeling is used. 
 
Behavioral modeling identifies the important state variables 
in the system, capturing the causal effects among these state 
variables (under both nominal and off-nominal situations), 
and describing how state variables change under the 
influence of other state variables and commands issued by a 
control system. 
  
Behavioral models of this type are invaluable, in that they 
can be used for multiple purposes, including: 
 
• Informing the design of flight and ground software (e.g., 

estimation and control algorithms); 
• Using them directly in model-based estimation & control 

software (e.g., Kalman filters); 
• Informing the design of fault protection mechanisms 

(models of nominal and off-nominal behavior can feed 
into fault tree and FMECA analyses, risk analyses, and 
fault monitor/response design. 

• Feeding directly into simulations, as described in Section 
6.0, below; and 

• Using them for planning and scheduling purposes 

(including automated planning and scheduling, either on 
the ground or onboard the spacecraft). 

 
A novel model-based systems engineering methodology, 
called State Analysis [4], has been developed to complement 
the functional decomposition approach and better address 
the complexity challenge. It provides a methodical and 
rigorous approach for:  
 
• Modeling behavior in terms of system state variables and 

the relationships between them (state-based behavioral 
modeling); 

• Capturing mission objectives in detailed scenarios 
motivated by operator intent (goal-directed operations 
engineering); and 

• Describing the methods by which objectives will be 
achieved (state-based software engineering). 

 
The work described in this paper focuses solely on the state-
based behavioral modeling aspect of state analysis, which 
provides an iterative process for discovering state variables 
of the system under control and for incrementally 
constructing the model. The steps in this process are as 
follows: 
 
1. Identify needs – define the high-level objectives for 

controlling the system.  
2. Identify state variables that capture what needs to be 

controlled in order to meet the objectives, and define 
their representation. 

3. Define state models for the identified state variables – 
these may uncover additional state variables that affect 
the identified state variables. 

4. Identify measurements needed to estimate the state 
variables, and define their representation. 

5. Define measurement models for the identified 
measurements – these may uncover additional state 
variables. 

6. Identify commands needed to control the state variables, 
and define their representation. 

7. Define command models for the identified commands – 
these may uncover additional state variables. 

8. Repeat steps 2-7 on all newly discovered state variables, 
until all relevant variables and effects are accounted for. 

9. Return to step 1, this time to identify additional 
objectives, and proceed with additional iterations of the 
process until the scope of the mission has been covered. 

 
This modeling process can be used as part of a broader 
iterative incremental system and software development 
process, in which cycles of the modeling process can be 
interwoven with concurrent cycles of software 
implementation. 
 
JPL’s state analysis approach is novel and unique in three 
ways: 
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• It is based on a state-based control architecture (see 
Figure 3) and leverages a core set of underlying 
architectural principles [5]. 

 
• When coupled with a state-based software architecture 

[5], State Analysis provides a common vocabulary for 
systems and software engineers to communicate, and a 
common set of architectural elements such that the gap 
between the requirements provided by the systems 
engineer and the software developed by software engineer 
can be minimized. More specifically, it defines direct 
mappings from the system requirements (expressed in the 
form of behavioral models) to software specifications, 
and from these software specifications to implemented 
software artifacts. 

 

 Figure 3 State-Based Control Architecture 

• It considers the full breadth of system state variables (e.g., 
dynamics, environmental states, device status and health, 
parameters, resources, etc...) and allows for 
documentation of models using whatever representation is 
most appropriate (differential equations, state charts, 
tables, pseudo-code, textual descriptions, etc...). 

 
State analysis produces and compiles information that is 
traditionally documented in a variety of systems engineering 
artifacts, including Hardware Functional Requirements, 
Failure Modes & Effects Analyses, Command Dictionaries, 
Telemetry Dictionaries and Hardware-Software Interface 
Control Documents. Rather than separate this information 
up into disparate artifacts, state analysis captures the same 
information in a State Analysis Database tool [6] that has 
been structured to prompt the state analysis process.  
 
The tool design promotes state discovery, and ensures that 
the models and other requirement artifacts are consistent 
with the state analysis methodology and state-based 
architecture. Furthermore, the database schema has been 
developed to map directly into requirements on adaptations 
of a state-based control system software framework [5]. In 
these ways, the database ensures a rigorous project 
development, from requirements analysis, through software 
design and implementation, to verification and validation. 
 

4.0 SYNTHESIS OF FUNCTIONAL AND STATE 
ANALYSES 

 
An important concept in MBSE is that the linkages between 
and within the functional, physical and requirement 
hierarchies are explicitly defined and machine auditable. 
Not only does this allow for an assessment of the 
completeness and integrity of the model but it allows 
engineers to assess the impact of changes to the system. 
With the introduction of state analysis, it is important to 
synthesize it with functional analysis. As mentioned above, 
the scope of this effort was limited to integration of the 
state-based behavioral modeling aspect of state analysis. 
Integration of the goal-directed operations engineering and 
state-based software engineering aspects of state analysis 
are left for future work. 
 
State and functional analysis synthesis was achieved by 
integrating the State Analysis Database tool schema into a 
general purpose, computer-aided, model-based systems 
engineering tool, resulting in a unified model-based systems 
engineering environment. As previously noted, the MBED 
pilot project used CORE from Vitech. However the State 
Analysis Database schema is portable and can be 
straightforwardly implemented in any systems engineering 
tool that allows for schema modification. 
 
The synthesis was broken down into 3 subtasks: (1) 
integration of the state analysis and functional analysis 
schemas, (2) infusion of the integrated schema into the 
CORE tool, and (3) demonstration of the integrated 
approach through modeling of an example system (in this 
case, the JUNO power subsystem). Subtasks (1) and (2) are 
described below in greater detail; the results of subtask (3) 
are described in Section 8.2.1 of this paper. 
 

4.1 SCHEMA INTEGRATION 
The first sub-task was to integrate the state analysis schema 
into the functional analysis schema embodied in CORE. 
This consisted of defining the appropriate set of 
relationships between elements of the state analysis schema 
(confining our scope to the state behavior modeling aspect 
of state analysis) and elements of the functional analysis 
schema described in Section 2.0, above. 
 
Figure 4(a) shows the relevant elements of the functional 
analysis schema, along with the relationships between these 
elements. As shown in Figure 4(b), this schema was 
augmented with the following state analysis elements: state 
variables, commands and measurements (goals are also 
shown in the diagram, but, as discussed above, the goal-
based operations engineering aspect of state analysis was 
outside the scope of this task). As shown in the figure, 
relationships were defined between the functional and state 
analysis elements, (for example, functions act on state 
variables by producing commands that affect them, based 
on data provided to them through measurements).  
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Figure 4. (a) Functional analysis elements and relationships 
(b) the elements and relationships of state analysis 

synthesized with functional analysis 

 
4.2 INFUSION INTO THE CORE TOOL  

Given the proposed integration of the two schemas defined 
in the previous section, the next subtask was to infuse this 
integrated schema into the selected model-based systems 
engineering tool CORE.  This involved editing the CORE 
database schema to add the state analysis elements 
described above as new classes.  
 
For each new class, appropriate attributes were defined, (for 
example, the state variable class defines fields for 
description, value representation, and behavior models). 
Finally, the relationships shown in Figure 4(b) were 

implemented as relationships in the schema (for example, 
each state variable can have pointers to other state variables, 
and to any requirements that constrain it).  
 
The resulting integrated schema enables systems engineers 
to straightforwardly navigate between the artifacts resulting 
from their functional and state analyses. Furthermore, it 
provides a mechanism for automatically auditing their 
models for satisfaction of certain completeness criteria, (for 
example, each state variable affects or is affected by at least 
one other state variable; each component has at least one 
state variable; each measurement provides data to at least 
one function; etc).  
 

5.0 MISSION PLANNING  
The mission planning component of the MBED process 
develops the Concept of Operations and the mission 
scenarios that are used to drive the models of the spacecraft 
subsystems in the spacecraft performance verification 
component.  Mission scenarios are descriptions of “what 
happens in space” to accomplish the objectives of the 
mission and are often described using timelines and time-
ordered listings of events.   
 
The mission planner is a system engineer with a focus on 
developing the understanding of how the mission events 
will proceed from launch until the end of the mission.  The 
mission planner develops descriptions of how the payload 
will be used to accomplish the scientific objectives; how the 
project systems support and constrain the science 
observations; how the mission design (including launch 
strategy and orbit) defines the timing and geometry for the 
observations; and how the operational strategy (including 
experience from past missions) is applied to develop the 
order and specifications of the mission events.  For flight 
projects, this overall description of the mission is 
documented in the Mission Plan.  The overall description is 
built up from scenarios that describe specific periods of the 
mission (for example, launch, commissioning of the 
spacecraft, maneuvers, routine and specialized science 
observation periods, data playbacks, etc.). 
 
For MBED, the mission planning process begins by reading 
the mission’s Phase-A concept study report. This document 
provides a fairly detailed mission design, operational plans, 
science and mission objectives, technical implementation, 
and project schedule. Next, the mission principal 
investigator is interviewed to further understand more 
specifics about the instrument operation and science 
strategy.  Questions are then directed to the spacecraft 
manufacturer (in-house or contractor) to better understand 
the subsystem capabilities and constraints (for example, turn 
rates, antenna patterns, etc.).  This part of the process 
includes participation by engineers building the subsystem 
models.  A trajectory simulation is then built using the 
SOAP tool (Satellite Orbit Analysis Program, created by 
Aerospace Corporation) [7]. to understand the timing of 
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geometric events, including tracking station contacts, and 
the spacecraft geometry relative to pertinent celestial bodies 
(Sun, Earth, target planet/asteroid/comet), including 
pointing of its solar arrays and communications antennas.  
Instrument pointing constraints are also investigated in the 
SOAP simulation to determine times during the mission 
when potential hazards/obstructions may occur.   
 
With this understanding of the science objectives, 
instrument operations and constraints, spacecraft subsystem 
characteristics, and the trajectory geometry, mission 
scenarios are identified to demonstrate typical and stressing 
cases for operating the payload and spacecraft during the 
course of the mission.  When these scenarios have been 
detailed with all of the relevant subsystem activities, they 
are converted to activity plans that can be utilized by the 
subsystem modeling tool(s) in a simulation run (the format 
of these activity plans is negotiated between the mission 
planner and the engineers building the subsystem models).  
The results of the simulation run are compared with the 
requirements that are built into the system engineering 
model to verify compliance. 
 
In addition to verification of the existing requirements, 
simulation runs of these scenarios may also bring new 
requirements to light.  Requirement discovery from 
examining scenarios is a standard part of the iterative 
process of mission design and requirements development. 
 

6.0 S/C PERFORMANCE SIMULATION  
In a deep space mission’s Preliminary Design Review, the 
project team seeks to demonstrate to a review board that 
they understand the mission objectives and that they are 
capable of achieving them. One aspect of this is showing 
that the conceptual S/C design satisfies the mission’s 
requirements. The document-based approach for doing this 
is to create design documents and have the review board 
evaluate them. The model-based approach is to simulate the 
mission and check the numerical results against the 
technical requirements. 
 
The model-based performance requirements verification 
process requires two pieces of software: an integrated suite 
of S/C performance and resource simulation models and a 
requirements checker that compares the time-ordered results 
to the mission’s technical requirements. The process is then 
straightforward: 
 
1. Configure with design data from the systems 

engineering model and run the integrated simulation 
models with every available mission plan. 

 
2. Compare the mission’s technical requirements to all 

simulation results and report any violations. 
  
While these principles apply to virtually any spacecraft 
performance and resource simulation models, the MBED 

pilot used JPL’s Integrated Spacecraft Analysis (ISCA) 
suite. Data transfer between the computer-aided model-
based systems engineering tool, CORE, the mission 
planning process and simulations was coordinated using 
JPL’s Inter-application Communication Executive for 
Computational Analysis Tools (ICECAT) described in 
Section 6.2.  
 

6.1 INTEGRATED SPACECRAFT ANALYSIS  
The simulation models used on this task were the multi-
mission models (MM Models) [8], integrated for an 
Integrated Spacecraft Analysis (ISCA).  
 
ISCA is designing, developing and/or acquiring dynamic, 
multi-mission, multi-use, multi-scale (variable fidelity) 
simulation models and an integrating framework that can be 
used cross-mission and throughout the mission lifecycle to 
predict spacecraft performance and resources. The goal is to 
provide ready-to-use, dynamic S/C performance and 
resource prediction capabilities in a single integrated 
package. 
 
The simulation models consist of finite state models, 
physics equations, algorithms and/or heuristics needed to 
make acceptable performance and resource predicts. 
Capabilities will include the ability to predict and plot 
spacecraft performance and resources in the following 
areas: 
 

• Power 
• Thermal 
• Propulsion 
• Attitude Control System (ACS) 
• Command and Data Handling (C&DH) 
• Telecommunications (flight & ground) 
• Orbital mechanics & S/C trajectory (SPICE) 

 
Structural and environmental models are integrated as well 
but they do not provide S/C predicts.  These capabilities are 
integrated using a Multi-Mission Simulation Framework 
(MMSF). Figure 5 shows a conceptual design of MMSF. 
 
MMSF consists of four main modules: a Simulation 
Manager, a Data Manager, Model Interface and a Multi-
Mission (MM) Model Interface. Internally the Simulation 
Manager coordinates simulation time and events for all 
models. The Data Manager handles data sharing between 
models as well as error and results reporting. This provides 
a tight model coupling so that when state changes occur in 
one model, such as solar array power, it immediately affects 
other models.  
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Figure 5 ISCA Multi-Mission Simulation Framework 
 
Access to these services is provided by the Application 
Programming Interface (API) and Model interfaces. The 
MMSF API (whose calls are incorporated in the Simulation 
and Data Managers) provides the necessary functions for 3rd 
party software (driver module) to run an ISCA. It allows 
driver modules to control the execution of the various 
Simulation Engine phases (configure, initialize, advance, 
finalize) and permits access to the Data Manager for 
retrieving/modifying data from any model during a session. 
 
Simulation models are integrated into ISCA through the 
MMSF Model and Multi-Mission Model Interface. These 
interfaces allow developers to easily plug “wrapped” 

 simulation model components into the framework and get 
them to operate with other components. Simulation model 
components can be from any source and be of any type, 
through they typically correspond to some aspect of a 
physical S/C assembly such as a data bus throughput model. 
The baseline set of MDAS Multi-Mission models use the 
optimized MM Model Interface while others use the more 
generic Model Interface. 
 
ISCA results are not scripted. Instead the simulation models 
will change state in response to inputs from the user. The 
framework coordinates model responses so that they can 
have an immediate effect on other models integrated into 
the  
simulation. To perform an analysis using ISCA the user 
must provide two types of information: the system 
configuration and the mission timeline. This information 
can be stored in files and read into the system before the 
simulation is executed or provided through the API as the 
simulation is executing.  
 
Configuration files are stamped with a particular mission 
time and contain parameters for each spacecraft in a system 
such as: design, environment and states, including software 
states, switch states, temperature, battery state of charge, 
attitude, location, ambient temperatures, atmospheric 
conditions, as well as any telecom relay spacecraft, and 
ground stations. There are two types of configuration files, 
the Baseline Configuration file and Situational 
Configuration file.  
 
 
 

 
 

Figure 6 ISCA Input and Output Files 
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Figure 7 ISCA Input and Output Files used in Simulation 

 
The Baseline Configuration file represents the configuration 
of each spacecraft at the beginning of the mission. There is 
typically a single baseline configuration file for each 
mission. Its purpose is to provide a basis for all 
configurations used throughout the mission. As such, 
spacecraft design parameters are important, whereas state 
and environmental parameters are not since they are 
expected to be contained in Situational Configuration files.  
 
The Situational Configuration files act as an overlay to the 
Baseline Configuration file and are used to contain system 
state and environmental parameters for a particular point in 
time. Design parameters are only put in this file if a 
hardware fault has occurred.  
 
Timeline files (also known as Mission Scenarios or Activity 
Plans) or are time-ordered lists of commands or parameter 
value changes. When the simulations are run, these values 
are sent to the simulation models at the specified time.  

 
6.2 INTER-APPLICATION COMMUNICATION 

 
One of the many challenges in MBED FY06 was the 
integration of the Mission Planning, System Engineering, 
and S/C Performance Analysis processes. On many flight 
projects there are standalone tools running on various 
platforms and producing data that cannot simply be input 
into other tools. One of the model-based engineering goals 
is to allow seamless transfer of data between a 
heterogeneous set of distributed tools.  In MBED FY06 this 
was achieved by adapting a COTS framework called 
Eclipse to create an Inter-application Communication 
Executive for Computational Analysis Tools (ICECAT) 
application. 
 
Eclipse is an open source community whose projects are 
focused on providing a vendor-neutral open development 

platform and application frameworks for building software 
[9]. The Eclipse Foundation is a not-for-profit corporation 
formed to advance the creation, evolution, promotion, and 
support of the Eclipse Platform and to cultivate both an 
open source community and an ecosystem of 
complementary products, capabilities, and services. 
 
Eclipse has formed an independent open eco-system around 
royalty-free technology and a universal platform for tools 
integration. Eclipse-based tools give developers freedom of 
choice in a multi-language, multi-platform, multi-vendor 
environment. Eclipse provides a plug-in based framework 
that makes it easier to create, integrate and utilize software 
tools, saving time and money. By collaborating and 
exploiting core integration technology, tool producers can 
leverage platform reuse and concentrate on core 
competencies to create new development technology. The 
Eclipse Platform is written in the Java language and comes 
with extensive plug-in construction toolkits and examples. It 
has already been deployed on a range of development 
workstations including Linux, HP-UX, AIX, Solaris, QNX, 
Mac OS X and Windows based systems. 
 
Since each tool has its own input/output data requirements 
and since the tools used within each domain vary, with new 
tools being developed or purchased, an interface plug-in 
module was created for each application used in MBED.  
ICECAT acts as the executive of the system. It is 
responsible for retrieving input data such as the 
requirements and S/C design, mission planning products 
(activity plans), executing integrated tools sets such as the 
ISCA simulation models and requirements verification 
software, and managing the storage for any end products 
generated (performance analysis results, logs, etc.). In 
addition, the framework is the user’s interface into the entire 
system. It is responsible for processing user requests to 
access data, run specific tools, and store various results. It 

         S/C (Baseline) Configuration 
defines invariant               

 S/C Design Parameters (t0) 

         Situational Configuration 
defines S/C State at some 

future time (t1) 

         Mission Timeline changes S/C 
State over the simulated time 

period (t1 – t2) 

t0 t1 t2

         Simulation produces results 
over the simulated time period 

(t1 – t2) 
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can also display data and assist users during a session 
through a set of wizards. 
 
The core framework software module communicates with 
the distributed set of tools by issuing command to a set of 
interface modules, which in turn access the necessary tools 
(see Figure 8).  Each of these modules is dedicated to a 
specific tool that needs to exchange data. Each module 
contains 2 basic components – data processing and 
communication protocol. The data processing component is 
responsible for: 
 

• Accepting ICECAT Core Software data as input 
• Mapping this data into the appropriate input data 

for the dedicated tool. 
• Formatting the data before sending it to a specific 

tool 
• Parsing this result data and 
• Mapping and formatting the result data into 

ICECAT Core Software data. 

 
Figure 8 Interface Plug-In Architecture 

 
The communication component is responsible for: 

 
• Invoking the tool and passing the formatted data 
• Accepting tool result data 

 
The set of tools that will be part of the system may change 
as new software is purchased and/or developed. ICECAT’s 
plug-in architecture design allows these new tools to be 
added without impacting the existing set of tools. When a 
new tool is to be added, an interface plug-in module must be 
created for that tool. Since the knowledge of the new tool 
and its data requirements are captured in the plug-in, the 
core data transfer software and the existing plug-ins are not 
affected.  
 
This approach to adding new tools allows for the 
functionality to be extended while reusing all of the existing 
software elements. 
 

7.0 NUSTAR PILOT  
 

MBED FY06 applied integrated, model-based system 
engineering, mission planning and performance 

requirements verification techniques to the NuSTAR 
project. Since this was a research task these capabilities 
were demonstrated by “shadowing” the flight project. 
Shadowing in this context means running the task as a flight 
project but not providing any deliverables to the flight 
project. 
 
Unfortunately the NuSTAR project was canceled two-thirds 
of the way through its formulation phase. Nevertheless 
many of the goals of the pilot were achieved as will be 
described in the following sections. 
 

7.1 NUSTAR MISSION DESCRIPTION 
The NuSTAR Mission is a Small Explorers (SMEX) 
mission for observing and imaging X-ray sources in space.  
This mission uses a technology that is new to space 
applications: a focusing hard X-ray telescope operating in 
the energy range from 6 to 80 keV.  The design of this 
telescope eliminates high detector backgrounds and allows 
for true imaging of these hard X-ray sources. 
 
While the mission was selected for a Phase A study in 2003 
and further study in 2005, it was ultimately cancelled by 
NASA in 2006 due to agency budget limitations. Before 
cancellation, the project was targeting a November 2007 
launch. 
 
The primary objectives of this mission are: 
 

• To conduct a census of black holes on all scales by 
performing deep wide-field surveys of the 
extragalactic field and the Galactic center. 

• To map radioactive material in young supernovae 
remnants, to study the birth of the elements and to 
understand how stars explode. 

• To detect relativistic jets of particles from 
extremely active galaxies, to understand what 
powers giant cosmic accelerators 

 
To achieve the sensitivities required for these objectives, 
there is an array of three co-aligned hard X-ray telescopes, 
requiring a 10-m focal length.  This focal length is provided 
by a 10-m mast that is deployable on-orbit. 
 
The proposed NuSTAR spacecraft was to be built by 
General Dynamics/Spectrum Astro.  It would have provided 
3-axis pointing control of the instruments using reaction 
wheels and a star tracker.  Energy would have been 
provided by two solar arrays with a single gimbal axis to 
allow pointing to the sun in any attitude and a battery to 
provide energy during the solar eclipse on each orbit.  The 
telecommunications design would have provided 
communications at S-band using two hemispheric patch 
antennas, with the capability to return science data to a 10-
meter ground antenna at a rate of 4.12 Mbps.  The standard 
science collection rate from the X-ray telescope would have 
been 15 kbps, with the spacecraft providing data storage of 
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16 Gbits. 
 
The NuSTAR spacecraft was to be launched into a 525-km 
circular, near-equatorial orbit, with an inclination of just 1º, 
minimizes radiation effects on the instrument data.  Upon 
arrival in this orbit, the observatory would have deployed its 
solar arrays, acquire signal from the primary ground station, 
and performed a checkout of all systems.  At fifteen days 
after launch, the observatory was to deploy the instrument 
mast.  It would then have performed an alignment to verify 
that the optics are focused on the detectors and calibration 
procedures to confirm operation of the instrument as a 
whole.  After confirming the operation of the telescope, the 
observatory would have begun its science operations. 
 
In its science operations phase, the observatory will perform 
surveys and pointed observations.  To perform a survey, the 
observatory will sweep the telescope’s boresight across a 
pre-defined portion of the sky, gathering data from any X-
ray sources residing in that area.  For pointed observations, 
the observatory would point the telescope directly at a 
specific target, collecting enough data to produce a high-
resolution X-ray image of the target. 
 
NuSTAR requires a daily downlink to return the science 
data collected from its current target.  The primary ground 
station for support of this mission is Malindi (Kenya), with 
a backup station of Kourou (French Guiana). With the near-
equatorial orbit, NuSTAR has visibility of both stations on 
every orbit.  Because of the rotation of the Earth, the 
spacecraft’s antenna configuration, and its current 
orientation, some orbits have greater potential for telecom 
passes than others.   
 

7.2 NUSTAR REQUIREMENTS AND DESIGN  
NuSTAR functional behavior, physical architecture and 
Level 2 requirements were captured in CORE Workstation 
5.1 following the procedure outlined in Section 2.0. CORE 
was selected because of its ability to document the critical 
systems engineering elements (e.g., requirements, functions, 
components, interfaces, risks, issues) and could be adapted 
to specific elements required by the team. 
 
The following functions, physical components, and 
requirements were entered into CORE: 
 
• 182 NuSTAR functions: The basic function was 

“Gathering Science Data” and that was decomposed to 
functions that would satisfy the NuSTAR requirements 
and can be allocated to a specific component. 

 

• 330 NuSTAR physical components: These physical 
components included common spacecraft items like: 
solar array panel, camera, CPU, or battery. Design 
information was entered into the property sheet for 
each component entered. Each component type had a 
unique template that described design parameters 

typically associated with that type of component.  
Templates were created using the CORE Schema 
Extender. 

 

• 194 NuSTAR requirements: Since the NuSTAR 
requirements were already available in Word 
documents, the MBED team used the CORE 
Requirement Extractor tool to copy them into the 
CORE database.  

 
Requirement verification tools need easy access to the 
numerical information within the requirements.  The 
Schema Extender tool was used to modify the basic CORE 
requirement template to include these fields. Since most 
measurable requirements are in the form: 
 
       Measurement <>= Value in Units for some Duration 
 
Fields were added for these numerical values. Like the 
intrinsic functions and physical architecture, the 
requirements were linked together in CORE in a 
hierarchical manner. CORE scripts were then used to audit 
the overall model for completeness and integrity. 
 
Three gate products were created by the MBED NuSTAR 
pilot from the CORE system engineering model: 
 

• NuSTAR Level 2 Requirements Document 
• NuSTAR Significant Risk List 
• NuSTAR Mission Scenarios 

 
The NuStar Level 2 Requirements document and the NuStar 
Mission Scenarios document were created using report 
scripts which were obtained from Vitech Corporation. The 
report scripts were run from within CORE, but before they 
could be used, the schema was modified in the CORE 
database to support the reports.  
 
Most of the system engineering data for NuStar was already 
resident within the CORE database, but additional report-
specific data was entered into the database as well as links 
to graphics.  Each section of the report was then configured 
by linking the correct report script with the appropriate data 
within the CORE database. Some of the report scripts 
generated CORE graphics. To include these in the report the 
graphics required some size adjustments so they could be 
optimally viewed.  
 
The risk report was created by a different mechanism since 
the Vitech report scripts did not support some of the field 
types.  The CORE database was dumped into an eXtensible 
Markup Language (XML) file.  A custom XML parser was 
then written (in perl), which extracted out the risk elements 
from the XML file, and then stored in a new XML file. The 
new XML file was also reformatted into a simpler XML 
format to aid in the report processing. A tool called 
JasperReport running under the Eclipse environment was 
then used to layout and create the report using the new 



 12

XML file as an input. 
 

7.3 NUSTAR MISSION PLANNING 
The baseline plan for the mission is to observe a series of 
targets that have been organized into a schedule.  
Depending on whether the target is to be surveyed or 
observed, the observatory will sweep the telescope across or 
stare at the target.  Pointed observations have durations that 
range from a week to a month, but survey can take 1-2.5 
months to complete.   
 
Scheduling of activities for a scenario is based on the 
expected behavior of the spacecraft and its instrument(s).  
The behavior of the spacecraft is defined by the orbit in 
which it resides and the attitude control system it uses.  For 
determining geometric events (eclipses, occultation, 
visibility), the orbit must be understood.  SOAP is a very 
powerful tool in gaining an understanding of an orbit; it 
quickly presents a visual representation of an orbit based on 
the elements the user enters, and provides an analysis 
environment that can quickly determine the geometric 
events.  Figure 9 shows a representation of the initial 
NuSTAR orbit. 

 
 

 
Figure 9 NuSTAR Initial Orbit – Polar View 
 

Also shown in this figure are a representation of the 
spacecraft antennas’ fields of view (FOV) and the 
telescopes FOV.  To represent the FOVs of the observatory 
components, an understanding of the attitude control 
concept is required.  In the case of NuSTAR, the spacecraft 
maintains a viewing orientation with the telescope boresight 
pointed at the science target and the solar array gimbal axis 
pointed normal to the Sun line; the solar arrays have a one-
axis gimbal and can maintain full-Sun on the arrays in this 
orientation. 
 
One of the main concerns for any mission is the capability 
to communicate with the ground.  Using the analyses 
available in SOAP and the expected performance of the 

spacecraft antennas and ground stations, occurrences of 
potential telecom contact can be determined.  To determine 
the occurrences of telecom contact, the antennas for the 
spacecraft and the ground station are modeled in SOAP.  
For the ground station, the antenna configuration is simple: 
a nadir-facing sensor with a half-cone angle of 85˚.  This 
configuration represents the antenna’s capability to track the 
spacecraft as it passes the station, assuming a 5˚ elevation 
mask.  The spacecraft has 2 antennas facing in opposite 
directions.  The antennas are omni-directional with 
boresights pointed in directions normal to the telescope 
boresight and the solar array gimbal axis; this configuration 
means that the antennas are pointed roughly toward and 
away from the Sun.  Because of antenna performance 
characteristics and obstruction by some parts of the 
spacecraft, each antenna falls short of covering a full 
hemisphere; the half-cone angle for each spacecraft antenna 
is 85˚, leaving a small gap in coverage around the plane 
normal to the antennas’ boresights.  This gap can be seen in 
Figure 9, where the telescope is pointed toward the upper 
right of the figure and the Sun is directly right.  The 
spacecraft switches between these antennas as required by 
the contact schedule.  SOAP analyses provided listings of 
all potential telecom contacts during the operational periods 
of these scenarios.  In most cases, a single ground station 
pass consisted of two contacts (one for each antenna on the 
spacecraft) with a short gap between them; there are 2 
passes each day that are single-contact passes, one sunlit 
and one during eclipse. 
 
A set of five scenarios were constructed to test a variety of 
mission requirements.  Each scenario represents either a 
typical case or a case that stresses some aspect of 
performance.  The first two scenarios present typical 
performance of the observatory at the beginning of the 
mission.  The difference between these scenarios is the 
treatment of ground station contacts; the first uses single-
contact passes that occur during eclipse periods (stressing 
power usage), and the second uses an expected data 
delivery time for scheduling the contact passes without the 
restriction to single-contact passes.  These two scenarios 
could be used as the beginning of a trade study on downlink 
operations.  The third scenario also presents typical 
operations, but uses a different science target and occurs in 
the later part of the mission; the observatory does not have 
orbit maintenance capability and its orbit decays over time, 
resulting in a shorter orbit period and shorter contact pass 
durations (stressing data return requirements).  The fourth 
scenario presents another case of typical operation in the 
earlier part of the mission, but it uses a different science 
target, a different delivery time, and restricts passes to sunlit 
single-contact passes; this case would provide more data for 
use in the trade study.  The final scenario demonstrates the 
execution of a worst-case target change associated with 
acquiring a target of opportunity; the spacecraft reorients by 
performing 3 single-axis rotations to maintain Sun-pointing 
with the solar arrays and to make use of the most stable 
configuration for most of the retargeting procedure.  This 
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group of scenarios addresses most of the operational modes 
and procedures that would be utilized over the life of the 
mission. 
 
This set of scenarios was constructed into a set of activity 
plans for use in the performance simulations.  The format 
was negotiated between the mission planner and the 
simulation software developers. 
 

7.4 NUSTAR SIMULATION RESULTS 
The integrated multi-mission (MM) models were simulated 
each of the five scenarios NuSTAR design parameters.  The 
results of the MM models were then compared to mission 
and system requirements to see if the design could meet 
them. Figures 10, 11 and 12 graphically depict some of the 
ISCA model predictions versus requirements for a portion 
of one of the typical scenarios described in section 7.3. 
 

 
 

Figure 10 – Bus Voltage vs. Time 
 
Figure 10 shows a graph of the predicted bus voltage as a  
 

 
 

Figure 11 – Battery State of Charge vs. Time 
function of time. The horizontal red lines indicate the 
required minimum and required maximum allowable bus 

voltages. The timeline below the plot indicate the periods of 
time when the NuSTAR spacecraft was alternately in the 
sun and eclipsed by the Earth. 

 
Figure 11 shows a graph of the predicted battery state of 
charge (SOC) as a function of time. The horizontal red line 
indicates the minimum state of charge percentage that is 
allowed by the mission and system requirements. The 
timeline is the same as in Figure 10. 
 

 
 

Figure 12 – Maximum Data Rate vs. Time 
 

Figure 12 depicts a graph of the predicted maximum 
telecommunications data rate as a function of time. The 
horizontal red line indicates the required minimum data rate 
for when the NuSTAR spacecraft is downlinking data to the 
Earth, whether it is the ground station at Malindi or Kourou. 
The timeline indicates when the scenario commanded the 
ISCA telecommunications model to perform the link 
analysis. The “Xmtr On” command from the scenario 
instructs the models to begin the link analysis, the “Xmtr 
Off” command instructs the models to end it.  
 

8.0 JUNO PILOT 
MBED FY06 applied integrated, model-based system 
engineering, mission planning and performance 
requirements verification techniques to the Juno project. 
Since this was a research task these capabilities were 
demonstrated by “shadowing” the flight project. Shadowing 
in this context means running the task as a flight project but 
not providing any deliverables to the flight project. 
 
While still early in the design process, a principal design 
risk was identified that the power margins may not be 
adequate in specific mission scenarios given solar cell 
degradation from the high radiation environment at Jupiter.  
Therefore, the MBED team applied the principles of model-
based engineering design to review the mission 
requirements, develop a detailed mission scenario, and 
analyze the power budget using specialized design tools. 
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8.1 JUNO MISSION DESCRIPTION 
In 2005, NASA selected the Juno mission to conduct an in-
depth study of Jupiter, the most massive planet in the solar 
system.  Juno will peer through the clouds of Jupiter’s 
atmosphere to reveal the fundamental processes of the 
formation and early evolution of the gas giant planet, 
allowing a better understanding of the solar system. 
 
The Juno science investigation will focus on four themes: 

• Origin: Juno will measure global oxygen and nitrogen 
by mapping the gravitational field and using microwave 
observations of water and ammonia. 

• Interior: Using maps of Jupiter’s gravitational and 
magnetic fields, Juno will reveal the interior structure. 

• Atmosphere: By mapping variations in composition, 
temperature, opacity and dynamics, Juno will determine 
the structure and dynamics of the atmosphere. 

• Magnetosphere: Juno will measure the distribution of 
Jupiter’s aurora’s charged particles, their associated 
fields, and the concurrent UV emissions of the planet’s 
polar magnetosphere. 

 

To accomplish these objectives, Juno will carry a scientific 
payload that includes seven instruments: (1) dual frequency 
gravity/radio science system, (2) six wavelength microwave 
radiometer for atmospheric sounding and composition, (3) 
dual-technique magnetometer, (4) plasma and energetic 
particle detector, (5) radio/plasma wave experiment, (6) 
ultraviolet imager/spectrometer, auroral distributions 
experiment, and (7) a color camera. 
 
The mission will be launched in 2011 on an Atlas V launch 
vehicle, and it will arrive in 2016 via an Earth gravity assist. 
 The science orbit will consist of 30 “11 day” science orbits 
at a 90-deg inclination to reduce radiation exposure.  This 
orbit will sample a full range of latitudes and longitudes, 
combining in situ and remote sensing observations. 
 
The Juno spacecraft is spin-stabilized and solar powered, 
incorporating dual-redundancy to reduce risk.  It has three 
conventional solar array wings, a dual-mode propulsion 
system, and a mechanically-quiet environment to minimize 
science disturbances.  Overall, the spacecraft design 
maintains exceedingly high margins with solar power being 
an exception in specific scenarios, where radiation may 
degrade the capability of the solar cells. 
 
 

 
 

Figure 13 Juno in its expected JOI orbit around Jupiter 
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8.2 JUNO REQUIREMENTS AND DESIGN  
The focus of the Juno effort was on power analysis, 
particularly during Jupiter Orbit Insertion (JOI).  It turns out 
that JOI was the peak power usage for the entire mission. 
Short power peaks during the trim maneuvers for each 
science orbit were also identified. 
 
Requirements, components and functions were entered into 
the CORE database for analysis. The data was obtained 
from the Juno Level 2 Requirements document, the Juno 
Concept Study Report, the Juno Power Worksheet and from 
discussions with the Juno Engineers. The schema used for 
the power-related components was directly inherited from 
schema used previously for NuStar – it was just a matter of 
entering the Juno data for the batteries and solar arrays. The 
solar arrays schema was broken into considerable detail 
including subcomponents for segments, panels, strings and 
cells.  Over 170 components were defined along with over 
400 related power modes. 
 
Over 260 requirements were entered into the database, with 
about 50% of them being power-related. The power margin  

requirements for Juno were mostly derived.  Power margins 
were broken down by subsystem and mission phase.  The 
total power margin consisted of the Current Best Estimate 
(CBE) + Contingency + a fixed 13% margin. The 
Contingency varied by mission phase, and ranged from 11% 
to 30%, averaging about 20%.  Power margins were derived 
for JOI and the Gravity Science orbit. The derived power 
margins were then used in the simulation runs.  After the 
requirements, components and function were all linked 
together in the CORE database, audits were performed to 
verity the linkages.  

 
8.2.1 JUNO STATE ANALYSIS 

 
In order to validate the integrated Functional and State 
Analysis schema described in Section 4.0, and to 
demonstrate the complementary nature of these two model-
based systems engineering methodologies, a limited state 
discovery and modeling process was applied to the Juno 
power subsystem described in Section 8.1. The resulting 
State Analysis artifacts were captured in the augmented 
CORE tool. Figure 14 is an example State Effects Diagram 
showing the key state variables, commands and 
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Figure 15 State Variables and associated models are captured in CORE 

 
measurements that were identified for the subsystem, and 
the causal effects among them.  
 
Populating the integrated database was relatively simple. 
The first step was to enter each state variable, command, 
and measurement element under their respective Classes in 
CORE. This was no different than for any other CORE 
element. Once the elements were instantiated in CORE, they 
could be further populated with their attribute information, 
e.g., state variables must specify how their values are to be 
represented (for instance, discrete states like Device 
Operational Modes may use enumerated sets of values 
{OFF, ON, INITIALIZING, etc.}, while continuous states 
like Device Power Consumption may be represented as 
floating point numbers in units of Watts). The final step was 
to “link” the various elements with each other, by 
instantiating the relevant relationships from those shown in 
Figure 4(b). Figure 15 shows a screen capture from the 
CORE tool, showing the list of 28 state variables that were 
defined for this subsystem, and showing the behavior 
modeling details associated with one of these state 
variables, the battery state of charge. 
 

8.3 JUNO MISSION PLANNING  
Because of the focus on the power subsystem and the desire 
for rapid turnaround, the initial mission planning activities 

focused on identifying the operational scenario that put the 
most stress on the power subsystem.  From examination of 
the power states and baseline operational scenarios provided 
by the Juno team, it was determined that the stressing case 
was Jupiter Orbit Injection (JOI); during the main-engine 
burn for JOI, the spacecraft places the highest demand on 
the power subsystem, and the solar arrays are facing away 
from the Sun, producing no/minimal power.  Juno’s 
baseline scenario for JOI was completely developed, but the 
mission’s launch date changed since the scenario’s 
development.  Using this baseline, the mission planner 
developed a new scenario for the new epoch of JOI; the 
activities are the same as those in the baseline, but the 
scheduling of the activities was modified to align with the 
new arrival epoch. 
 
Scheduling of activities for a scenario is based on the 
expected behavior of the spacecraft and its instrument(s).  
The behavior of the spacecraft is defined by the trajectory it 
traverses and the attitude control system it uses.  For 
determining geometric events (eclipses, occultation, 
visibility), the trajectory must be understood.  SOAP is a 
very powerful tool in gaining an understanding of a 
trajectory; it quickly presents a visual representation of a 
trajectory based on the elements the user enters or an 
ephemeris of the trajectory, and provides an analysis 
environment that can quickly determine the geometric 
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events. 
 
The trajectory for Juno for the selected epoch was provided 
by the Juno team and was analyzed for the relevant 
geometries.  The geometries of interest are the line-of sight 
between the ground stations and Juno, the potential for 
eclipses/occultations, and the solar array attitude relative to 
the Sun.  Although the telecom subsystem is not being 
modeled, the ground station contacts are relevant to the 
scheduling of activities, including transitions by the 
transmitter between standby and transmit.   
 
For the eclipse/occultation concerns, the trajectory was 
designed to not experience these types of events from 
Jupiter approach through end of mission (EOM); the SOAP 
analysis confirms this condition.  For the solar array 
attitude, the solar arrays are body-fixed and normal to the 
spin axis of the spacecraft; the spin axis of the craft is 
pointed at Earth for a majority of the JOI scenario, but when 
preparing for and executing the main-engine burn, the 
spacecraft precesses from Earth-point to a fixed attitude for 
burn execution, an attitude which points the spin axis 
approximately normal to the Sunline.   
 
The SOAP analysis produced tabular output of the ground 
station contacts and the profile of the solar array attitude.  
These data facilitate scheduling and construction of the 
activities plan for the JOI scenario. 
 

8.4 JUNO SIMULATION RESULTS 
The integrated multi-mission (MM) models simulated the 
JOI scenario using Juno design parameters for both current 
best estimate (CBE) and CBE plus contingency.  The results 
of the MM models were then compared to mission and 
system requirements to see if the design could meet. Figures 
16, 17 and 18 graphically depict some MM model 
predictions for the JOI scenario. The predictions are for the 
current best estimate design parameters. 

 

 
 

Figure 16 – Solar Array Power Generation vs. Time 

 
Figure 16 shows a graph of the predicted solar array output 
in watts as a function of time. The most critical portion of 
this scenario is when the Juno spacecraft makes its planned 
turn for the JOI burn. This turn requires that the spacecraft 
solar panels be turned nearly 90 degrees from the sun line. 
This results in no solar input on the solar arrays and, hence, 
that Juno spacecraft run on battery power only. 
 

 
 
Figure 17 – Propulsion Subsystem Power Consumption vs. 

Time 
 

Figure 17 depicts a graph of the amount of electrical energy 
in watts that the propulsion subsystem consumes as a 
function of time during the JOI scenario. This subsystem is 
the most power hungry subsystem during the scenario so 
Juno project engineers are concerned about the batteries 
being able to support the critical maneuver. The horizontal 
red line shows the system requirement for maximum power 
consumption that the propulsion subsystem should stay 
under for the duration of the scenario. 
 

 
 

Figure 18 – Battery Power vs. Time 
 

In Figure 18, the battery power supplied as a function time 
is depicted. When the Juno spacecraft turns for the JOI burn 
it is running entirely on battery power. This graph helps 
engineers understand the amount of stored energy that the 
batteries must provide in order for the spacecraft to survive 
the maneuver. It should be noted that predictions that lie 
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below the x-axis indicate that the battery is discharging and 
predictions above indicate that it is charging. 
 

9.0 CONCLUSIONS 
In FY 2006, JPL’s Research and Technology Development 
(R&TD) program undertook an effort to develop and pilot 
formulation phase model-based engineering design 
capabilities by “shadowing” two deep space missions. Since 
much of the activity in this phase center on system 
engineering, the initiative focused on developing its Model-
Based System Engineering (MBSE) capabilities. 
 
The pilots demonstrated how the traditional document-
based functional analysis can be enhanced through the use 
of a computer-aided model-based systems engineering tool. 
Model-based tools and techniques such as these improve 
system requirements and design by providing automated 
audits of the model’s consistency, completeness and 
integrity.  
 
In the model-based approach, system engineers focus on 
creating descriptive models, rather than writing documents. 
The models now become the repository for system 
engineering knowledge so that artifacts, such as gate 
product documents, can be automatically produced rather 
than written. When integrated with a web-based inter-
application communication executive, one can select and 
transform system engineering information to enable other 
kinds of analyses such as simulation-based risk and 
performance assessments. 
  
Shortcomings in functional analysis’ ability to represent 
dynamic system behavior were overcome with the 
introduction of mission planning, performance simulation 
and state analysis. Synthesizing functional and state analysis 
highlighted the complementary nature of these two model-
based systems engineering methodologies and promises to 
yield significant benefits, including:  
 
• Better understanding and documentation of designed 

behavior; 
• Earlier identification of unexpected design challenges; 
• Improved traceability to developed software; and 
• More robust fault protection in the designed system. 
 
Integrating the state analysis schema into a general-purpose 
model-based systems engineering tool provides for 
traceability between functional models and behavioral 
models, and allows for easy navigation between these 
different but related domains. 
 
The task also demonstrated the utility and applicability of 
time-based performance and resource simulations and 
mission planning in providing early verification of system 
requirements.    
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